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Matrix product states (M PS)

• Introduction to matrix product states

• Ground states of finite systems

• Ground states of infinite systems

• Real-time evolution

• Projected dynamics



I ntroduction to M PS

in total: 2n matrices

S Östlund & S Rommer PRL (95);
M Fannes, B Nachtergaele, RF Werner (92)



MPS bond dimension

D=2

D=3

D=8

D~ exp(n)

Exact description of an arbitrary quantum state
requires exponentially large matrices A

But what kind of states are we really interested in?

Hilbert Space

Matrix product states only describe a certain subset
of the full Hilbert space 



Physical background

Bond dimension D puts a bound to entanglement:
entanglement entropy at most log2(D)

F Verstraete, D Porras & JI Cirac, PRL (04)

All gapped 1d systems at zero temperature can be well 
described by matrix product states!

typically
Area law:

Find matrices A such that the total energy is minimal!



W hy tensor networks

• Density matrix renormalization group (DMRG)

• successful simulation of strongly correlated 1d 
systems

• 1D: matrix product states ~ DMRG

• 2D: PEPS & friends

• early stage but promising

• quantum monte carlo & “sign problem”

Obsolete when we get a quantum computer
(Chris Monroe’s talk)



On notat ion

or or ...



Observables and M PS

One-site operators Two-site operators

Expectation value of any (local) operator
can be calculated efficiently

Simulate ground states

Find such matrices A[ j ]  that the energy is 
minimal



Variat ional approach

All tensor elements of contained in

F Verstraete, D Porras & JI Cirac, PRL (04)



Technical details:
Re-gauge the MPS such that Neff = I  and solve 

an eigenvalue problem H x = E x

Variat ional optimization

1. Choose a fixed site j

3. Move to the next site

Quadratic form in 
tensor elements!

4. Repeat 2-3 until convergence reached

2. Find tensor          that minimizes the energy

F Verstraete, D Porras & JI Cirac, PRL (04)
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Variat ional optimization

1. Choose a fixed site j

3. Move to the next site

Quadratic form in 
tensor elements!

4. Repeat 2-3 until convergence reached

2. Find tensor          that minimizes the energy

n=100

Non-critical models (gapped):
Finite bond dimension for any n

Critical models (non-gapped):
Bond dimension scales polynomially with n



Gauge transformations

=



I maginary t ime evolut ion
G Vidal, PRL (03)

Evolve in small time steps

how to decompose into local time steps?

Suzuki-Trotter decomposition

All we need is a smart decomposition of H



I maginary t ime evolut ion
G Vidal, PRL (03)

Suzuki-Trotter decomposition



MPS time evolut ion

Sufficiently long time yields the ground state...
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Real t ime evolut ion

P Calabrese & J Cardy, JSM (05)

Efficient in very limited cases....

A state gets 
entangled and bond 
dimension explodes!



I nfinite chains

Assumption: 
invariance under shifts by (1,2,...) sites

Much fewer parameters!

G Vidal, PRL (07)



iMPS simulat ion

Basic elements

Only local tensor updates required!



Projected entangled pair states (PEPS)

• Generalization of matrix 
product states to two 
spatial dimensions

• Entangled pairs 
between neighboring 
sites

• Success not entirely 
guaranteed by the area 
law

• More costly than MPS



PEPS Ansatz

Entangled pair

Projector

F Verstraete, JI Cirac (unpublished)



PEPS: Tensor Network

5-leg tensors

4-leg tensors

parameters/site

Tr = “Tr”



Observables and PEPS

Expectation value of a 
local operator O

Exact contraction 
straight forward

but costly!



Two layers to a single double layer

Bond dimension D2



Efficient contract ion of PEPS

2. Truncate
1. Merge two rows together

3. Replace the two rows

F Verstraete & JI Cirac (unpublished)



Variat ional minimization

How to minimize energy? 
Solve a generalized eigenvalue problem

and move to the next site...



(I maginary) t ime evolut ion

Finite-site PEPS:
Time evolution 
very costly

i-PEPS:
Imaginary time 
evolution the 
way to go!



(I maginary) t ime evolut ion

Finite-site PEPS:
Time evolution 
very costly

i-PEPS:
Imaginary time 
evolution the 
way to go!

V Murg, F Verstraete & JI Cirac, PRB (09)



There’s more...

• infinite PEPS (iPEPS)

• multiscale entanglement renormalization (MERA)

• quantum monte carlo + tensor networks

• tensor renormalization

J Jordan, R Orus, G Vidal, F Verstraete, &  JI Cirac, PRL (08)

G Vidal, PRL (07)

N Schuch, MM Wolf, F Verstraete & JI Cirac, PRL (08)
A Sandvik & G Vidal, PRL (07)

HH Zhao et al, PRB (10)



Fermionic systems

• 1-dimensional fermionic systems

• Jordan-Wigner transformation

• 2-dimensional fermionic systems

• fermionic PEPS



Fermionic 1-D systems

Jordan-Wigner Transformation

Locality of interactions is preserved!



PEPS and fermions

1. Fermionic (contraction) order is important

3. Jordan-Wigner 
transformation 

destroys locality
4. Parity preservation

fPEPS = PEPS + parity + contraction order

2. Fock space



fPEPS

Entangled pair

How to get a tensor network from this mess?

H’s and V’s commuteQ’s (anti-)commute

CV Kraus, N Schuch, F Verstraete & JI Cirac PRA (10)



f-Contract ion order

Choose a contraction order

Further changes to the contraction order 
produce signs

IP & F Verstraete PRB (10)



f-Observables



Fermionic swap rule

but

Example

P Corboz et al (09)
T Barthel, C Pineda &  J Eisert (10)

IP & F Verstraete (10)
.............



f-Observables
IP & F Verstraete PRB (10)

Physical sites in 
<bra| and |ket> can now 

be 
brought together!



f-Observables: double-layer
IP & F Verstraete PRB (10)



Conversion to sign-free TN

site&product operator dependent sign factors
(globally determined)

IP & F Verstraete PRB (10)



Sign-free contract ion of fPEPS

It’s not very pretty - but it’s local!

All fermionic signs 
are accounted for locally!

Technical details

IP & F Verstraete PRB (10)



fPEPS algorithm
1. Choose a site (i,j) and calculate effective operators

2. Find A[i,j] minimizing the total energy

3. Move to the next site and repeat

Once we’ve obtained a sign-free tensor network, 
all intermediate steps are well known.
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fPEPS algorithm
1. Choose a site (i,j) and calculate effective operators

2. Find A[i,j] minimizing the total energy

3. Move to the next site and repeat

Once we’ve obtained a sign-free tensor network, 
all intermediate steps are well known.

IP & F Verstraete PRB (10)



PEPS & fPEPS

• fPEPS basically same complexity as PEPS

• no “sign problem” (quantum monte carlo feature) with

• fermionic systems

• frustrated spin systems

• relatively small bond dimensions accessible presently 
(D~8)



Other tensor networks

• Tree tensor networks

• Quantum chemistry

• Momentum space

• MERA

• String states

• Continuous matrix product states



I I I : T ime evolut ion & M ixed states

• Time evolution of matrix product states:

• a projected evolution approach

• Mixed states and time evolution

• Systems in a thermal equilibrium

• Systems far from the equilibrium

• Time evolution in Heisenberg picture



Projected dynamics

Time evolution

But translation invariant MPS breaks the T-invariance!



Projected dynamics

Let’s choose quite often

gradient

projection

must stay in the same T-
class

Requirement:



Projected dynamics

gradient

projection

IP,  TJ Osborne, K Temme & F Verstraete (in prep)



I nfinite translat ion-invariant chains
IP,  TJ Osborne, K Temme & F Verstraete (in prep)



I nfinite translat ion-invariant chains
IP,  TJ Osborne, K Temme & F Verstraete (in prep)



Essentials of iM PS

Leading eigenvectors 
only!

Scale A such that 



Essentials of iM PS



I nfinite translat ion-invariant chains
IP,  TJ Osborne, K Temme & F Verstraete (in prep)



I nfinite translat ion-invariant chains
IP,  TJ Osborne, K Temme & F Verstraete (in prep)



Projected dynamics

• Preserves the translation invariance properties

• Infinite & finite systems 

• Imaginary time evolution (fast & easy)

• Real time evolution (ODE solvers)

• Slower than the usual MPS time evolution

• Continuous Matrix Product States (cMPS): the way to 
go!



M atrix product operators
F Verstraete, JJ Garcia-Ripoll & JI Cirac, PRL (04)

T Prosen & M Znidaric PRE (07)

Any operator can be written in this form
(if D is sufficiently large)



W hy operators?

A system can be in a mixed state

Thermal equilibrium

Far from the equilibrium

Can tensor networks be used for these systems?



Systems in a thermal equilibrium

An operator is just a “state” in the operator space

Zero temperature Infinite temperature



On operator space

How can we get 

T Prosen & IP, PRA (07)

Simple time evolution!



Example

1. start with a product state 
|1>

2. evolve MPS in “time”



I s it  efficient?
M Znidaric, T Prosen & IP,  PRA (08)

Same behavior as for the ground states!
(1/6) comes from the central charge in CFT

Quantum mutual information

critical non-critical



Dynamics of mixed states

Schrödinger equation Liouville equation

Isolated systems

Liouvillian operator is a linear operator

Again: time evolution (in operator space)



Open systems

Lindblad master equation

Non-equilibrium steady state

NESS shouldn’t be too 
correlated!

T Prosen & IP, PRL (08)

But it is sometimes.



Open systems

Lindblad master equation

Non-equilibrium steady state

NESS shouldn’t be too 
correlated!

T Prosen & IP, PRL (08)

But it is sometimes.

T Prosen & M Znidaric, JSM (09)Convergence, spin current, XXZ



H eisenberg picture



H eisenberg picture



H eisenberg picture

Growth of effective MPO-bond dimension

non-integrable

integrable
(infinite index)

integrable
(finite index)

T Prosen & M Znidaric, PRE (07)



H eisenberg picture
T Prosen & IP,  PRA (07)

time
evolution

in 
operator
space



W hy?
T Prosen & IP, PRA (07)
IP & T Prosen, PRB (09)

Local operators are very simple!

tim
e

Still, it only works in integrable models!
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